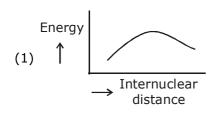
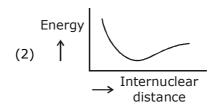
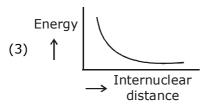


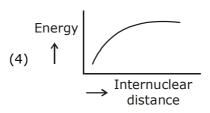
QUESTION PAPER WITH SOLUTION

CHEMISTRY _ 5 Sep. _ SHIFT - 1

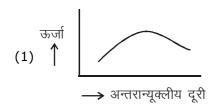


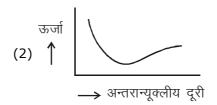

H.O.: 394, Rajeev Gandhi Nagar, Kota www.motion.ac.in |⊠: info@motion.ac.in

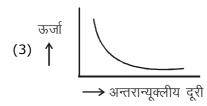


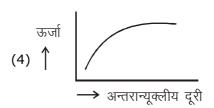

Motion

1. The potential energy curve for the H₂ molecule as a function of internuclear distance is:

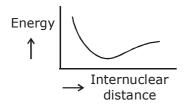








अन्तरान्यूक्लीय दूरी के फलन के रूप में H2 अणु के लिए स्थितिज ऊर्जा का वक्र है :



Sol. 2

- **2.** The most appropriate reagent for conversion of C_2H_5CN into $CH_3CH_2CH_2NH_2$ is: C_2H_5CN को $CH_3CH_2CH_2NH_2$ में परिवर्तित करने के लिए सबसे ज्यादा उपयुक्त अभिकर्मक है : (1) NaBH₄ (2) Na(CN)BH₅ (3) CaH₇ (4) LiAlH₄
- Sol. 4 $CH_3CH_2CN \xrightarrow{LiAlH_4} CH_3CH_2CH_2NH_2$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

3. Which of the following is not an essential amino acid?

- (1) Valine
- (2) Tyrosine
- (3) Lysine
- (4) Leucine

निम्न में से कौनसा अनिवार्य ऐमीनो अम्ल नहीं है ?

(2) टाइरोसीन

(3) लाइसीन

(4) ल्यूसीन

Sol.

Tyrosine in not an essential amino acid

4. Which of the following derivatives of alcohols is unstable in an aqueous base? निम्नलिखित में से कौनसा ऐल्कोहॉल का व्युत्पन्न एक जलीय क्षारक में अस्थिर है ?

Sol.

Hydrolysis of ester occurs in basic medium.

- 5. The structure of PCl₅ in the solid state is:
 - (1) Square planar [PCl₄]⁺ and octahedral [PCl₆]⁻
 - (2) Tetrahedral [PCl₄]⁺ and octahedral [PCl₆]⁻
 - (3) Trigonal bipyramidal
 - (4) Square pyramidal

ठोस प्रावस्था में PCI, की संरचना है:

- (1) वर्ग समतली [PCI] + तथा अष्टफलकीय [PCI] -
- (2) चतुष्फलकीय [PCI₄]+ तथा [PCI₆]-अष्टफलकीय
- (3) त्रिसमनताक्ष द्विपिरामिडी
- (4) वर्ग पिरामिडी

Sol.

In solid state PCl_s exist in Ionpair i.e. (PCl₄+) and (PCl₆-)

PCl₄ + (sp³ tetrahedral)

 PCl_6^{-} (sp³d²) – octahedral)

6. A diatomic molecule X₂ has a body-centred cubic (bcc) structure with a cell edge of 300 pm. The density of the molecule is 6.17 g cm⁻³. The number of molecules present in 200 g of X₂ is:(Avogadro constant $(N_A) = 6 \times 10^{23} \text{ mol}^{-1}$

एक द्विपरमाणुक अणु X, की काय केन्द्रित घन (bcc) संरचना है जिसकी कोष्टिका कोर 300 pm है। अणु का घनत्व 6.17 g ${
m cm}^{-3}$ है । ${
m X}_2$ के 200 g में उपस्थित अणुओं की संख्या होगी :((${
m N}_{
m A}$) ऐवोगेद्रो स्थिरांक = $6 \times 10^{23}~{
m mol}^{-1}$)

 $(1) 8 N_{A}$

 $(2) 2 N_{\Lambda}$

 $(3) 40 N_{A}$

Sol.

$$X_2 \rightarrow BCC$$

$$a = 300 pm$$

$$d = 6.17g/cm^3 = \frac{2 \times GMM}{6 \times 10^{23} \times (300 \times 10^{-10})^3}$$

$$GMM = \frac{6.17 \times 6 \times 9 \times 3 \times 10^{-1}}{2}$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

GMM =
$$81 \times 6.17 \times 10^{-1}$$

= 49.97 g/mol

No. of molecules =
$$\frac{200g}{49.97 g/mol} = 4 mol$$

= $4N_A$

7. The equation that represents the water-gas shift reaction is:

(1) CO(g) +
$$H_2O(g) \xrightarrow{673 \text{ K}} CO_2(g) + H_2(g)$$

(2)
$$2C(s) + O_2(g) + 4N_2(g) \xrightarrow{1273 \text{ K}} 2CO(g) + 4N_2(g)$$

(3) C(s) +
$$H_2O(g) \xrightarrow{1270 \text{ K}} CO(g) + H_2(g)$$

(4)
$$CH_4(g) + H_2O(g) \xrightarrow{1270 \text{ K}} CO(g) + 3H_2(g)$$

वह समीकरण जो वाटर गैस शिफ्ट अभिक्रिया को निरूपित करता है, होगा

(1) CO(g) +
$$H_2O(g) \xrightarrow{673 \text{ K}} CO_2(g) + H_2(g)$$

(2)
$$2C(s) + O_2(g) + 4N_2(g) \xrightarrow{1273 \text{ K}} 2CO(g) + 4N_2(g)$$

(3) C(s) +
$$H_2O(g) \xrightarrow{1270 \text{ K}} CO(g) + H_2(g)$$

(4)
$$CH_4(g) + H_2O(g) \xrightarrow{1270 \text{ K}} CO(g) + 3H_2(g)$$

Sol.

Fact

8. The increasing order of the acidity of the α -hydrogen of the following compounds is: निम्न यौगिकों के α-हाइड्रोजन के अम्लीयता का बढता क्रम है:

(A)

(1)(D) < (C) < (A) < (B)

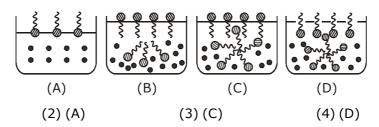
(2)(A) < (C) < (D) < (B)(4)(B) < (C) < (A) < (D)

(3) (C) < (A) < (B) < (D)Sol.

Stability order

CRASH COURSE

FOR JEE ADVANCED 2020


FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

Motion

9. Identify the correct molecular picture showing what happens at the critical micellar concentration (CMC) of an aqueous solution of a surfactant (polar head; non-polar tail; water). एक पष्ट संक्रियक के एक जलीय विलयन के क्रान्तिक मिसेली सान्द्रता (CMC) पर क्या होता इसको दर्शाने वाले सही आण्विक चित्र को पहचानिये (श्रृवीय सिरा; अध्रुवीय पुंछ; जल).

(1) (B) **Sol. 4**

10. If a person is suffering from the deficiency of nor-adrenaline, what kind of drug can be suggested?

(1) Antihistamine

(2) Antidepressant

(3) Anti-inflammatory

(4) Analgesic

यदि कोई व्यक्ति नॉर-एड्रिनेलिन की न्यूनता से पीड़ित है तो किस प्रकार की औषधि का सुझाव दिया जा सकता है ?

(1) प्रतिहिस्टामिन

(2) प्रति अवसादक

(3) प्रतिशोतज (एन्टी-इनफ्लेमेटरी)

(4) पीड़ाहारी

Sol. 2

If nor-adrenaline is low, person may suffer from depression. Hence, anti depressant drug is suggested.

11. The values of the crystal field stabilization energies for a high spin d⁶ metal ion in octahedral and tetrahedral fields, respectively, are:

(1) $-2.4 \Delta_0$ and $-0.6 \Delta_+$

(2) $-1.6 \Delta_0$ and $-0.4 \Delta_L$

(3) $-0.4 \Delta_{0}$ and $-0.27 \Delta_{1}$

(4) $-0.4 \, \Delta_{0}^{\circ} \, \text{and} \, -0.6 \, \Delta_{1}^{\circ}$

अष्टफलकीय तथा चतुष्फलकीय क्षेत्रों में उच्च प्रचक्रण d⁶ धातु आयन के लिए क्रिस्टल क्षेत्र स्थिरीकरण ऊर्जाओं का मान क्रमशः होगा:

(1) -2.4 ১ বথা -0.6 ১

(2) -1.6 ১ ব্ৰথা -0.4 ১

(3) -0.4 Δ_{0} तथा -0.27 Δ_{+}

(4) -0.4 ১ বথা -0.6 ১

Sol. 4

 $d^{6}(octahedral) \rightarrow high spin complex$

$$= t_{2g^4} eg^2$$
 CFSE
$$= \left(-\frac{2}{5} \times 4 + \frac{3}{5} \times 2\right) \Delta_0$$

$$= \left(\frac{-8+6}{5}\right) \Delta_0$$
$$= -0.4\Delta_0$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

d⁶ (tetrahedral) → high spin complex

$$= eg^3 t_{2g^3}$$

CFSE =
$$\left(-\frac{3}{5} \times 3 + \frac{2}{5} \times 3\right) \Delta_t = -0.6 \Delta_t$$

12. A flask contains a mixture of compounds A and B. Both compounds decompose by first-order kinetics. The half-lives for A and B are 300 s and 180 s, respectively. If the concentrations of A and B are equal initially, the time required for the concentration of A to be four times that of B (in s) is: (Use In 2 = 0.693)

A तथा B यौगिकों का एक मिश्रण एक फ्लास्क में उपस्थित हैं। दोनों यौगिक प्रथम कोटि बल गतिकी द्वारा विघटित होते हैं। A तथा B की अर्द्ध आयु क्रमशः 300 s तथा 180 s हैं। यदि A तथा B की सान्द्रतायें प्रारम्भ में बराबर रही हो तो A की सान्द्रता को B की सान्द्रता के चार गूना होने में लगने वाला समय (सेकण्ड में) होगा: (Use In 2 = 0.693)

- (1)180
- (2)300
- (3)120
- (4)900

Sol.

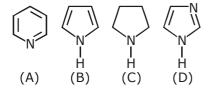
$$A_{\scriptscriptstyle +} = A_{\scriptscriptstyle 0} \cdot e^{-k_1 t}$$

$$B_t = B_0 \cdot e^{-k_2 t}$$

$$k_1 = \frac{ln2}{300}$$

$$k_2 = \frac{ln2}{180}$$

 A_{+} and B_{+} are related as [A] = 4[B]


$$A_0.e^{-k_1t} = 4 \times B_0.e^{-k_2t}$$

$$\frac{t}{180}-\frac{t}{300}=2$$

$$\frac{t}{3} - \frac{t}{5} = 120$$

$$\frac{2t}{15} = 120$$
 t = 900 sec

13. The increasing order of basicity of the following compounds is: निम्न यौगिकों की क्षारीयता का बढता क्रम है :

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

MOTION

Sol.

Correct order of basicity

$$\left(\begin{array}{c} N \\ N \end{array} \right) > \left(\begin{array}{c} N \\ N \end{array} \right) > \left(\begin{array}{c} N \\ N \end{array} \right)$$

14. The condition that indicates a polluted environment is:

- (1) pH of rain water to be 5.6
- (2) BOD value of 5 ppm
- (3) 0.03% of CO_2 in the atmosphere
- (4) eutrophication

वह स्थिति जो दूषित पर्यावरण इंगित करती है, होगी:

- (1) वर्षा के जल का pH 5.6 होना
- (2) BOD का मान 5 ppm होना
- (3) वायुमण्डल में 0.03% CO₂ होना
- (4) सुपोषण

Sol

Eutrophication is the condition in which excessive richness of nutrients in a lake or water body, which causes dense growth of plant life and BOD increases.

15. In the sixth period, the orbitals that are filled are:

छठे आवर्तक में भरे जाने वाले कक्षक हैं:

- (1) 6s, 5d, 5f, 6p
- (2) 6s, 4f, 5d, 6p
- (3) 6s, 6p, 6d, 6f (4) 6s, 5f, 6d, 6p

Sol.

(Fact) → energy order of orbital's according to Aufbau principle 6s < 4f < 5d < 6p

16. The difference between the radii of 3^{rd} and 4^{th} orbits of Li^{2+} is ΔR_1 . The difference between the radii of 3rd and 4th orbits of He⁺ is ΔR_2 . Ratio ΔR_1 : ΔR_2 is:

 Li^{2+} के तीसरे तथा चौथे कक्षों की त्रिज्याओं का अंतर $\Delta \mathrm{R_1}$ है। He^+ के तीसरे तथा चौथे कक्षों की त्रिज्याओं का अंतर $\Delta \mathrm{R_2}$ है। ΔR₁: ΔR₂ अनुपात है :

- (1) 8 : 3
- (2)3:8
- (3) 3 : 2
- (4) 2 : 3

Sol.

$$(R_4 - R_3)_{Li^{+2}} = \frac{0.529}{3} \{4^2 - 3^2\} = \Delta R_1$$

$$\left(R_4 - R_3\right)_{He^{+2}} \ = \ \frac{0.529}{2} \left\{4^2 - 3^2\right\} = \Delta R_2$$

$$\frac{\Delta R_1}{\Delta R_2} = \frac{\frac{1}{3}}{\frac{1}{2}} = \frac{2}{3}$$

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Motion

17. In the following reaction sequence the major products A and B are: निम्नलिखित अभिक्रिया क्रम में मुख्य उत्पाद A तथा B है :

$$+ \bigoplus_{O} \xrightarrow{anhydrous} A \xrightarrow{1. Zn-Hg/HCl} B$$

(1)
$$A = \bigcup_{CO_2H} B = \bigcup_{CO_$$

(3)
$$A = \bigcup_{CO_2H} ; B = \bigcup_{C$$

Sol. 4

- **18.** The correct electronic configuration and spin-only magnetic moment (BM) of Gd^{3+} (Z = 64), respectively, are:
 - (1) [Xe] $5f^7$ and 7.9 (2) [Xe] $4f^7$ and 7.9 (3) [Xe] $5f^7$ and 8.9 (4) [Xe] $4f^7$ and 8.9 $6d^{3+}$ (Z = 64) के सही इलेक्ट्रॉनिक विन्यास तथा स्पिन मात्र चुम्बकीय आघूर्ण (BM में) है :
 - (1) [Xe] 5f⁷ तथा 7.9 (2) [Xe] 4f⁷ तथा 7.9 (3) [Xe] 5f⁷ तथा 8.9 (4) [Xe] 4f⁷ तथा 8.9

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

Motion[™]

Sol. 2

Gd
$$\rightarrow$$
 [Xe]⁵⁴ 4f⁷ 5d¹ 6s²
Z=64 $-3e^{\Theta}$

$$Gd^{+3} = [Xe]^{54} 4f^{7}$$

$$\mu = \sqrt{7(7+2)} = \sqrt{63}$$

= 7.9 BM

- **19.** An Ellingham diagram provides information about:
 - (1) The pressure dependence of the standard electrode potentials of reduction reactions involved in the extraction of metals.
 - (2) The conditions of pH and potential under which a species is thermodynamically stable.
 - (3) The kinetics of the reduction process.
 - (4) The temperature dependence of the standard Gibbs energies of formation of some metal oxides. एलिंगम आरेख जिस सूचना को प्राप्त कराता है वह होती है :
 - (1) धातु के निष्कर्षण में निहित अपचयन अभिक्रिया के मानक इलेक्ट्रॉड विभव की दाब निर्भरता।
 - (2) pH तथा विभव की शर्तें जिसमें की स्पीशीज ऊष्मागतिकीय रूप से स्थिर होती है।
 - (3) अपचयन प्रक्रम की बलगतिकी।
 - (4) कुछ धातु ऑक्साइडों के सम्भवन में मानक गिब्ज ऊर्जा की ताप निर्भरता

Sol. 4

Fact

20. Consider the following reaction:

$$N_2O_4(g) \rightleftharpoons 2NO_2(g); \Delta H^0 = +58 \text{ kJ}$$

For each of the following cases (a, b), the direction in which the equilibrium shifts is:

- (a) Temperature is decreased.
- (b) Pressure is increased by adding N₂ at constant T.
- (1) (a) towards reactant, (b) towards product
- (2) (a) towards reactant, (b) no change
- (3) (a) towards product, (b) towards reactant
- (4) (a) towards product, (b) no change

निम्नलिखित अभिक्रिया पर विचार कीजिए:

$$N_2O_4(g) \rightleftharpoons 2NO_2(g); \Delta H^0 = +58 \text{ kJ}$$

निम्न प्रत्येक प्रकरण (a, b) में, वह दिशा जिसमें साम्य खिसक जायेगा होगी:

- (a) ताप घटाया जाता है।
- (b) स्थिर T पर N, डालकर दाब बढ़ाया जाता है।
- (1) (a) अभिकारक की तरफ, (b) उत्पाद की तरफ
- (2) (a) अभिकारक की तरफ, (b) कोई परिवर्तन नहीं
- (3) (a) उत्पाद की तरफ, (b) अभिकारक की तरफ
- (4) (a) उत्पाद की तरफ, (b) कोई परिवर्तन नहीं

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

◆ Doubt Support ◆ Advanced Level Test Access

◆ Live Test Paper Discussion ◆ Final Revision Exercises

Motion[®]

Sol. 2

$$N_2O_4(g) \Longrightarrow 2NO_2(g)$$

 $\Delta H^{\circ} = + 58 \text{ kJ}$

(towards reactant)

- (a) temp $\downarrow \Rightarrow$ Backward shift as it is endothermic reaction
- (b) As \dot{N}_2 will not react with both N_2O_4 & NO_2 , as moles increases in reactants, as much as in products, a = hence there is no change in equilibria.

∴ no change

21. The minimum number of moles of O₂ required for complete combustion of 1 mole of propane and 2 moles of butane is .

1 मोल प्रोपेन तथा 2 मोल ब्यूटेन के पूर्ण दहन के लिए आवश्यक O3 की अल्पतम मोलों की संख्या होगी _____.

Sol. 18

$$C_3H_8 + 5O_2 \rightarrow 3CO_2 + 4H_2O$$

1 mol 5 mol

$$C_4H_{10} + \frac{13}{2}O_2 \rightarrow 4CO_2 + 5H_2O$$

2 mol 13 mol

Total required mol of $O_2 = 5 + 13 = 18$

- **22.** The number of chiral carbon(s) present in piptide, Iie-Arg-Pro, is ______ पेप्टाइड, IIe-Arg-Pro, में उपस्थित काइरल कार्बनों की संख्या है
- Sol. 4

A soft drink was bottled with a partial pressure of CO_2 of 3 bar over the liquid at room temperature. The partial pressure of CO_2 over the solution approaches a value of 30 bar when 44 g of CO_2 is dissolved in 1 kg of water at room temperature. The approximate pH of the soft drink is _____ × 10^{-1} .

(First dissociation constant of $H_2CO_3 = 4.0 \times 10^{-7}$; log 2 = 0.3; density of the soft drink = 1 g mL⁻¹) कक्ष ताप पर एक सॉफ्ट ड्रिंक को CO_2 के 3 बार आंशिक दाब पर बोतल में द्रव के ऊपर भरा जाता है। कक्ष ताप पर जब 44gm CO_2 1 kg जल में घुलती है तो विलयन के ऊपर CO_2 का आंशिक दाब 30 बार पहुँच जाता है। सॉफ्ट ड्रिंक का pH लगभग होगा $\times 10^{-1}$.

 $(H_2CO_3 =$ का प्रथम वियोजन स्थिरांक 4.0×10^{-7} ; log 2 = 0.3; सॉफ्ट ड्रिंक का घनत्व $= 1 \text{ g mL}^{-1}$)

Sol. 37

CRASH COURSE

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

Doubt Support ◆ Advanced Level Test Access
 Live Test Paper Discussion ◆ Final Revision Exercises

Motion

 $pH = -[-4 \times log(2)] = 3.7 = 37 \times 10^{-1}$

24. An oxidation-reduction reaction in which 3 electrons are transferred has a ΔG^0 of 17.37 kJ mol⁻¹ at 25°C. The value of E_{cell}° (in V) is _____ × 10^{-2} . $(1 F = 96,500 C \text{ mol}^{-1})$ एक अपचयोपचय अभिक्रिया जिसमें 3 इलेक्ट्रॉन स्थानांतरित होते हैं, का 25°C पर ∆G° का मान 17.37 kJ mol⁻¹ है।. E° cell (का मान V में) होगा _____ × 10⁻². $(1 F = 96,500 C mol^{-1})$

Sol.

$$\Delta G^{\circ} = -nFE^{\circ}$$

 $17.37 \times 1000 = -3 \times 96500 \times E^{\circ}$
 $E^{\circ} = \frac{17370}{3 \times 96500}$
 $E^{\circ} = \frac{579}{9650} \text{ volt}$
 $= 0.06 = 6 \times 10^{-2} \text{ volt}$
Ans. 6

- The total number of coordination sites in ethylenediaminetetraacetate (EDTA⁴⁻) is _____. 25. एथिलीन डाइऐमीनटेट्राऐसीटेट (EDTA⁴-) में उपसहसंयोजन स्थलों की कुल संख्या है _
- Sol. EDTA4- is hexadentate ligand

FOR JEE ADVANCED 2020

FREE Online Lectures Available on You Tube

Go Premium at ₹ 1100

 ◆ Doubt Support ◆ Advanced Level Test Access ◆ Live Test Paper Discussion ◆ Final Revision Exercises

Admission **OPEN**

जब इन्होंने पूरा किया अपना सपना तो आप भी पा सकते है लक्ष्य अपना

JEE MAIN RESULT 2019

KOTA'S PIONEER IN DIGITAL EDUCATION 1,95,00,000+ viewers | 72,67,900+ viewing hours | 2,11,000+ Subscribers

SERVICES	SILVER	GOLD	PLATINUM
Classroom Lectures (VOD)			
Live interaction	NA		
Doubt Support	NA		
Academic & Technical Support	NA		
Complete access to all content	NA		
Classroom Study Material	NA		
Exercise Sheets	NA	S.	
Recorded Video Solutions	NA	8	
Online Test Series	NA		
Revision Material	NA		
Upgrade to Regular Classroom program	Chargeable	Chargeable	Free
Physical Classroom	NA	NA	
Computer Based Test	NA	NA	
Student Performance Report	NA	NA	
Workshop & Camp	NA	NA	
Motion Solution Lab- Supervised learning and instant doubt clearance	NA	NA	
Personalised guidance and mentoring	NA	NA	

•				
CLASS	SILVER	GOLD	PLATINUM	
7th/8th	FREE	₹ 12,000	₹ 35,000	
9th/10th	FREE	₹ 15,000	₹ 40,000	
11th	FREE	₹ 29,999	₹ 49,999	
12th	FREE	₹ 39,999	₹ 54,999	
12th Pass	FREE	₹ 39,999	₹ 59,999	

- SILVER (Trial) Only valid 7 DAYS or First 10 Hour's Lectures.
- GOLD (Online) can be converted to regular classroom (Any
- MOTION Center) by paying difference amount after lockdown. *** PLATINUM (Online + Regular) can be converted to regular
- classroom (Any MOTION Center) without any cost after

New Batch Starting from:

16 & 23 September 2020

Zero Cost EMI Available

